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18 ABSTRACT:  The  objectives  of  this  study  were  to  determine  if  relative  body  condition a nd  

relative  liver  size  (hepatosomatic  index,  HSI)  could b e  utilized to p  redict  maturity  6–8  months  

prior  to s pawning,  when  samples  are  readily  available,  and if   these  condition m easures  were  

related to f  ecundity.  Female  sablefish w ere  sampled o n f our  survey  legs  during  a  summer  

longline  survey  in J uly  and A ugust  2015 a nd d uring  a  winter  survey  in D ecember  2015,  which is   

1 to 3 m   onths  prior  to th e  spawning  season i n t he  Gulf  of  Alaska.  The  relative  body  condition  

and r elative  liver  weight  (hepatosomatic  index,  HSI)  of  fish in creased t hroughout  the  summer  

survey,  reaching m easurements  similar  to th ose  observed d uring  the  winter.  There  were  

significant  differences  between im mature  and  mature  fish H SI  and  relative  body  condition a nd  

these  differences  increased t hroughout  the  summer,  making  these  factors  useful  for  predicting  

maturity  on t he  last  legs  of  the  survey.  On t hese  later  legs,  models  that  utilized r elative  body  

condition a nd H SI,  as  well  as  length a nd  age,  to p redict  whether  a  fish w as  immature  or  would  

spawn p roduced m aturity  curves  that  best  matched  models  based o n h istological  maturity  

classifications.  However,  models  without  HSI  may  be  the  best  choice  for  future  work  because  

liver  weight  is  not  regularly  collected o n a nnual  surveys  and o n th e  last  leg o f  the  survey  they  

provided m aturity  curves  that  were  very  similar  to  those  models  that  included H SI.  Utilizing  the  

winter  data  set  when f ecundity  could b e  enumerated,  fecundity  was  significantly  related t o  

relative  condition a nd H SI.  Increasing  or  decreasing  these  measures  of  condition b y  one  standard  

deviation i n a   model  of  fecundity,  which a lso i ncluded l ength,  resulted in a  n e stimated d ecrease  

in f ecundity  of  32%  or  an i ncrease  of  47%  for  an  average  size  fish ( 78 c m).  These  results  show  

the  importance  of  incorporating  fish c ondition in to m easures  of  population p roductivity.  
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43 1.  Introduction  

A  decrease  in f ish  condition,  often m easured a s  relative  liver  weight,  Fulton’s  condition  

factor  (Fulton 1 904),  or  relative  condition,  have  been l inked t o r educed f ecundity  and d elayed  

maturation ( e.g.,  Lambert  and D util  2000;  Rideout  and R ose  2006;  Skjaeraasen e t  al.  2012;  

Skjaeraasen e t  al.  2015).  Because  of  these  relationships,  condition h as  been u sed s uccessfully  to  

predict  spawning  (Morgan 2 004;  Morgan  and  Lilly  2005;  Rideout  et  al.  2006)  and f ecundity  

(Skjaeraasen e t  al.  2013).  For  populations  that  experience  a  fluctuating  environment  and  

accompanying  variable  condition,  it  is  important  to e valuate  how  condition i ndices  relate  to  

aspects  of  reproduction a nd p opulation p roductivity.  For  example,  condition i ndices  have  been  

used i n p lace  of  spawning  biomass  in th e  stock-recruitment  relationship f or  Atlantic  cod b ecause  

they  served  as  an a ccurate  measure  of  population  productivity  (Marshall  and  Frank  1999;  

Marshall  et  al.  1999;  Marshall  et  al.  2000;  Marshall  et  al.  2003).   

Relative  liver  weight  and b ody  condition a re  commonly  used a s  measures  of  energy  

storage,  both b ecause  liver  weight,  body  weight,  and l ength a re  relatively  easy  to c ollect  and  

because  they  are  related t o f ecundity  and  maturation ( Morgan a nd  Lilly  2005;  Rideout  et  al.  

2006;  Skjaeraasen  et  al.  2013).  The  utility  of  liver  weight  and b ody  condition a re  dependent  on  

when m easurements  are  collected w ithin th e  reproductive  cycle.  For  example,  if  a  fish i s  

depleted f rom s pawning  and is   sampled p rior  to r estoring  energy  reserves,  measurements  of  

condition m ay  not  indicate  future  spawning  (e.g.,  Atlantic  cod,  Skjaeraasen  et  al.  2009).  In  

addition,  for  many  species,  oocyte  development  leading  to a   future  spawning  event  is  only  

evident  during  a  portion  of  the  reproductive  cycle.  Finding  the  appropriate  period f or  both 1 )  

collecting  liver  samples  and c ondition m easurements  and 2 )  accurately  determining  if  a  fish w ill  
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65 spawn in th  e  future  spawning  season is   essential  when u sing  these  data  as  indicators  of  future  

spawning  and f ecundity.    

Sablefish  Anoplopoma fi mbria  inhabit  the  northeastern P acific  Ocean  from n orthern  

Mexico t o th e  Gulf  of  Alaska,  westward to th  e  Aleutian  Islands,  and i nto th e  Bering  Sea  

(Wolotira  et  al.  1993).  In  Alaska,  fish a ge-3 a nd o lder  (maximum a ge  is  94)  (Kimura  et  al.  1998)  

reside  in w aters  approximately  150–1,000  m  deep a long  the  continental  slope,  in c ross-shelf  

gullies,  and in n  earshore  deep c hannels  (Rutecki  et  al.  2016).  They  spawn i n th e  late  winter  or  

early  spring  throughout  Alaska  (Sigler  et  al.  2001;  Rodgveller  et  al.  2016)  and a re  batch  

spawners  with  group s ynchronous  oocyte  development  and d eterminate  fecundity  (Hunter  et  al.  

1989).  They  are  a  commercially  importance  species  off  Alaska,  the  U.S.  west  coast,  and B ritish  

Columbia,  Canada.  The  sablefish  Anoplopoma f imbria  fishery  in A laska  was  valued a t  $97.6  

million i n 2 016 ( Fissel  et  al.  2017).   

In  Alaska,  the  National  Oceanic  and A tmospheric  Administration’s  (NOAA)  Alaska  

Fisheries  Science  Center  (AFSC)  conducts  an a nnual  longline  survey  from  June–August  

throughout  Alaska  to e stimate  the  abundance  of  select  groundfish s pecies.  Although th is  is  not  

close  to th e  time  of  year  when f ish a re  spawning,  it  is  the  only  time  period w hen s amples  are  

regularly  available  for  maturity  classification.  Maturity  is  assessed  annually  on t hese  summer  

surveys  macroscopically  (with th e  naked e ye)  while  at-sea.  Histology  is  not  regularly  used  for  

classification b ecause  of  time  constraints  at-sea  and t he  high c osts  associated w ith s lide  

preparation a nd in terpretation.  At-sea  observations  have  not  been u sed f or  assessment  because  

macroscopic  classifications  can b e  biased i f  collections  are  early  in d evelopment.  Possible  

reasons  for  this  error  are:  1)  some  fish th at  will  spawn h ave  not  initiated o ocyte  maturation  yet;  

2)  ovaries  with  maturing o ocytes  are  not  easily  distinguishable  from  fish th at  will  not  spawn  
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88 because  the  ovary  is  still  small  and th e  oocytes  are  not  yet  visible  macroscopically;  or  3)  an  

effect  of  staff  changes  (observer  effect).   

The  objectives  of  this  study  were  to:  1)  examine  the  progression o f  liver  size  and b ody  

condition t hroughout  the  survey  to d etermine  at  what  point  there  is  a  separation b etween  

immature  fish a nd th ose  that  will  spawn;  2)  determine  if  future  spawning c an b e  predicted d uring  

any  portion o f  the  survey  using  condition,  length,  and a ge,  but  no  maturity  information;  and 3 )  

determine  if  condition is   related t o  measurements  of  fecundity,  in c ollections  in w inter  just  prior  

to s pawning.  This  information c ould  be  used to p  rovide  a  time  series  of  maturity  at  age  and  

fecundity  based o n  measurements  that  can  easily  be  collected  at-sea.   

 

2.  Methods  

 

2.1 A nnual  summer  survey  

The  annual  Alaska  Fisheries  Science  Center  longline  survey  extends  throughout  the  Gulf  of  

Alaska  (GOA)  and i nto t he  eastern B ering  Sea  in  odd  years  and th e  Aleutian I slands  in  even  

years  (Rutecki  et  al.  2016).  For  this  study,  sampling  occurred in 2  015 i n t he  Gulf  of  Alaska  only,  

including  the  East  Yakutat  (EYAK),  West  Yakutat  (WYAK),  and C entral  GOA  management  

areas  (CGOA)  (Legs  3–7  of  the  survey,  Figure  1).  As  part  of  the  regular  survey  design,  stations  

were  placed s ystematically  37–56  km  apart  along t he  continental  shelf  and  in c ross-shelf  gullies.  

Gear  was  set  at  depths  from a pproximately  150–1,000 m .  At  this  depth r ange  the  great  majority  

of  sablefish a re  >2  years  old ( Rutecki  et  al.  2016).  Sablefish w ere  collected  for  biological  

samples  using  a  random,  systematic  sampling  design s o t hat  samples  were  taken f rom a ll  depths  

at  100–200 m i  ntervals,  as  they  are  in a ll  years.  Leg  3 b egan o n 5 J  uly,  2015 a t  the  southern-most  
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111 station in E  YAK  and t hen s ampling  progressed w estward ( Table  1,  Figure  1).  The  last  day  of  

sampling  was  on 2 6 A ugust  2015.  Dates  of  sampling  for  each l eg  are  presented in T  able  1.  Leg  4  

overlaps  the  area  sampled o n  Leg 5 a  nd  Leg  4 i s  only  two d ays  long;  therefore,  in a nalyses  legs  4  

and 5 w  ere  combined ( termed L egs  4/5).  Different  scientists  are  deployed o n e ach le g  of  the  

survey  and th e  personnel  vary  each  year,  but  training  is  provided  for  scientists  and p hotographs  

are  provided a s  a  reference.  The  station p ositions  and s ampling  dates  remain th e  same  each  year.  

 

2.2 W inter  survey  

A  special  project  was  conducted n earby  Kodiak I sland i n th e  CGOA  (Figure  1),  which i s  

the  approximate  center  of  the  Alaska  sablefish p opulation a nd o verlaps  parts  of  Legs  6  and 7   

(Hanselman e t  al.  2016).  A  trawl  vessel  was  chartered to c  onduct  fishing  operations  from  3–10  

December  2015.  Measurements  and ti ssues  were  collected f rom a ll  females.  To lo cate  specimens  

from  the  full  range  of  ages  and le ngths  of  mature  and im mature  females,  trawling  operations  

were  planned t o s ample  the  continental  slope  and  cross-shelf  gullies.  Locations  were  chosen  

based o n c ommercial  fisheries  catch r ates,  AFSC  bottom tr awl  survey  catches,  catches  during a   

sablefish m aturity  study  in D ecember  2011,  and th eir  proximity  to  Kodiak,  Alaska  (Rodgveller  et  

al.  2016).   

 

2.3 F ish s ampling  

Sablefish s elected  for  biological  sampling  were  measured  (fork  length in   mm)  and  weighed  

(g)  on a   motion-compensating  scale.  Sagittal  otoliths  were  extracted a nd s tored d ry  in v ials.  

Otoliths  were  aged b y  personnel  of  the  AFSC  Age  and G rowth  Program  using  standard,  

validated m ethods  (Kimura  and A nderl  2005;  Kimura  et  al.  2007).  Ovaries  were  placed in to  

individual  cloth b ags  with la bels  and s ubmerged i n a   5-gallon b ucket  containing  ExCell  PlusTM  
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135 tissue  fixative.  Livers  were  frozen a t-sea,  transported t o th e  laboratory f rozen,  and t hen th awed  

and w eighed.  Fish le ngths,  weights,  and o toliths  are  collected  annually  and l ivers  and o varies  

were  collected i n 2 015 f or  this  study.  

 

2.4 Ma turity  classification  

Histological  slides  were  prepared f rom  sections  taken  from  the  middle  of  the  ovary.  Each  

sample  included a   portion o f  the  ovarian  wall.  The  thickness  of  the  ovarian  wall  has  been u sed t o  

determine  if  a  fish h as  previously  spawned in s  everal  fish ta xa  (Rideout  and T omkiewicz  2011)  

including  sablefish ( Rodgveller  et  al.  2016).  Previously,  Rodgveller  et  al.  (2016)  found th at  

oocyte  development  did  not  vary  within b oth o varies  and s o o ne  sample  was  analyzed p er  fish.  

Ovarian tis sues  were  embedded in p  araffin,  sectioned a t  5–6 µ m,  stained  with  

hematoxylin,  and  counterstained w ith e osin.  Histological  slides  were  examined m icroscopically  

and t he  stages  of  oocyte  development  were  recorded u sing  methods  used in   Rodgveller  et  al.  

(2016)  for  sablefish ( Table  2),  which u tilized s amples  from th e  winter,  approximately  2  months  

prior  to s pawning.  The  maturity  classification w as  based o n t he  most  advanced o ocyte  stage  

present  in t he  ovary  and  other  structures  (Table  2).  Skip s pawning  fish w ere  arrested i n  

development  in e ither  the  multiple  nucleoli,  perinucleolar,  or  early  cortical  alveoli  stages.  Unlike  

immature  fish,  they  also  had e vidence  of  past  spawning,  such  as  a  thick  ovarian w all  and o ther  

characteristics  (Table  2)  (Rodgveller  et  al.  2016).  Because  skip s pawning f ish in R  odgveller  et  al.  

(2016)  and R odgveller  et  al.  (2018)  did n ot  have  advanced  cortical  alveoli  stages  present,  ovaries  

with o ocytes  in th is  stage  in th e  summer  were  staged a s  developing  toward  spawning.  

Fish  were  also c lassified  macroscopically  at-sea  by  scientists,  who  varied a mong  legs.  

Fish  were  classified  as  immature,  maturing,  and r esting.  No  attempt  was  made  to id entify  skip  
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158 spawning  macroscopically  because  it  was  first  identified i n s ablefish i n 2 011 ( Rodgveller  et  al.  

2016)  and is   difficult  to i dentify  without  histology.  Immature  fish w ere  defined a s  having  thin,  

tubular  ovaries  where  oocytes  were  indistinct  through t he  ovarian w all.  Mature  ovaries  were  

defined a s  distended  with o paque,  white,  and d iscernable  oocytes.  Ovaries  were  classified a s  

resting  if  they  were  large,  but  not  flaccid,  and o ocytes  were  not  discernable.  Fish i n th e  resting  

and m ature  stages  were  classified a s  mature  in lo gistic  models  of  age  at  maturity,  as  described in   

section 2 .7.  

 

2.5 L iver  size  and b ody  condition  

For  both s ummer  and  winter  samples,  the  relative  liver  weight  was  calculated a s  an i ndex  

of  liver  size,  termed th e  hepatosomatic  index,  where  ���  is  the  liver  weight  and  ��  was  the  total  

fish w eight  (HSI;  equation 1 ).  The  HSI  can b e  correlated w ith m aturation a nd f ecundity  because  

the  liver  serves  as  energy s torage  and is   where  vitellogenin i s  synthesized ( Petersen 1 979,  

Emmersen a nd E mmersen 1 976).   

 

(1)     ��� = 
 �� 100 �  ��

 

Relative  body  condition ( RC)  in  g  was  calculated  as  the  deviation i n m easured w eight  

from  the  length-weight  curve  of  all  fish s ampled i n th e  2015 s ummer  samples,  where  ��  was  the  

fish l ength a nd  ��  was  the  total  fish w eight  (equation 2 ).   

 

(2)     RC  is  the  residual  of   �� = 
� � �    
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181 The  HSI  or  RC  for  each l eg  were  compared t o o ne  another,  for  mature  and i mmature  fish  

separately,  using  an  ANOVA.  Within e ach A NOVA,  pair-wise  comparisons  between l egs  were  

analyzed u sing  Tukey-Kramer  HSD  tests  (Zar  2010).  Within e ach le g,  t-tests  were  used t o t est  

for  significant  differences  between i mmature  and  mature  HSI  or  RC.  Shifts  in t hese  indices  

throughout  the  year  may  indicate  when i mmature  and m ature  fish b egin to   show  different  energy  

storage  strategies.  HSI  and R C  were  also u sed in   models  to p redict  fecundity  and  maturity,  as  

described in s  ection 2 .6 a nd 2 .7.  

 

2.6 F ecundity   

Ovaries  from  the  winter  were  chosen f or  fecundity  estimation if   they  had v itellogenic  

oocytes  and n o p ost-ovulatory  follicles  in h istological  ovary  cross  sections,  which w ould i ndicate  

that  partial  spawning  had o ccurred.  The  advanced  (mature)  cohort  of  oocytes  was  clearly  

separable  from  the  early d eveloping  (immature)  cohort  based o n o ocyte  size  and a ppearance,  as  

described f or  sablefish b y  Mason  et  al.  (1983)  and H unter  et  al.  (1989).  This  indicates  that  

sablefish h ave  determinate  fecundity,  where  only  one  cohort  of  oocytes  develop w ithin a   

spawning  season.  Fish o f  a  wide  range  of  lengths  were  chosen f or  fecundity  measurements.  

Fecundity  was  measured  using  the  gravimetric  method  (Murua  et  al.  2003),  where  a  

subsample  of  mature  oocytes  from a n o vary  is  weighed,  the  number  of  oocytes  counted,  and t he  

number  of  eggs  per  g m ultiplied b y  the  total  ovary  weight.  Samples  were  taken  from  the  anterior,  

middle,  and p osterior  sections  of  one  ovary.  The  three  measures  of  eggs  per  g  were  averaged  and  

then m ultiplied b y  the  total  ovary  weight.  

A  multiple  linear  regression o f  fecundity  and  measurements  of  maternal  size  and  

condition w ere  fit  using  the  full  model  (equation 3 ).  In e quation 3 ,  log���  was  the  natural  
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204 logarithm  of  fecundity,  �  was  the  intercept,  ����  was  the  hepatosomatic  index  (equation 1 ),  ��  
was  the  fish l ength,  ��  was  the  total  fish w eight,   ��� 	was  the  relative  condition ( equation 2 ),  and  

��  was  the  normal,  random e rror.   

 

(3)     log���� = � + ���� + �� +�� + ��� + ��  
 

In  equation 3 ,  fecundity  was  log  transformed s o t hat  q-q p lots  of  the  residuals  from l inear  

regressions  with t he  explanatory  variable  were  linear,  indicating  normally  distributed r esiduals  

(Thode  2002).  Akaike  Information C riterion ( AICc)  values  for  the  full  and  reduced  models  were  

compared  and t he  model  with t he  smallest  AICc  was  chosen a s  the  best  model  (Akaike  1974).  

For  the  fecundity  analysis  fish w ere  sampled i n w inter;  therefore,  the  RC  values  for  this  analysis  

were  calculated u sing  fish s ampled  for  maturity  and f ecundity  in t he  winter  (equation 2 ).  All  fish  

sampled in w  inter  were  included,  not  just  those  sampled f or  fecundity.  The  adjusted R 2  (equation  

4)  was  calculated f or  models  of  fecundity,  where  DF  is  the  degrees  of  freedom  and  CT  is  the  

corrected t otal  (equation 4 ):  

 

 (4)    ��������	�  = 1 − "#$%	&'($)#	�#))*)� 
&(+	*,	-'($)#-	�./�    . 

201�./� 

 

2.7 P redicting m aturity  using fi sh c ondition,  size,  and a ge  

A  logistic  model  was  used to p  redict  whether  an i ndividual  fish w as  functionally  mature  

(would s pawn i n th e  coming  winter)  or  immature  for  samples  collected o n  all  legs  (3–7)  of  the  

summer  survey  (equation 5 ).  The  response  was  either  mature  (1)  or  not  mature  (0).  There  were  
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226 too f ew  fish t hat  were  skip s pawning,  as  evident  in  the  histology  slides,  to i nclude  them  as  a  

response  variable  in th e  model.  There  were  11 s kip s pawning  fish i n t he  summer  data  set  and  

there  were  only  0 to 6 s   kip s pawning  fish o n e ach le g.   

In  equation 5 ,  the  survey  leg  (3–7),  ��3�,  is  represented  as  4 c ategories  or  pooled  into 2   

categories.  Three  pooling  options  were  explored:  1)  Leg  3 a s  one  category  and a nd  Legs  4/5,  6,  7  

as  another;  2)  Legs  3,  4/5,  6 a s  one  category  and  Leg  7  as  the  other;  3)  or  Legs  3  and 4 /5 a s  one  

category  and  Legs  6 a nd  7 a s  other.  �4  is  the  fish le ngth,   �4  is  the  age, 	 ���4  is  the  hepatosomatic  

index  (equation 1 ),  ��� 	was  the  relative  condition ( equation 2 ),  and th e  interactions  between H SI  

and R C  with le g  were  included t o a ccount  for  differences  that  may  occur  due  to g eography  or  

sampling  timing:    

 

(5)                    5 
��67�8�4 = ��3� + �4 + �4 + ���4 + ��� + ��3� ∗ ���4 + ��3� ∗ ��4  .  

 

Fish  from L eg  4 w ere  not  included i n m odels  where  age  was  included b ecause  there  are  

no a ges  available  for  these  fish.  The  full  model  (M0)  and s everal  other  nested m odels  were  

chosen f or  a  comparison o f  prediction a ccuracy  (Table  3).  In t hese  models  either  age,  HSI,  RC,  

or  the  interaction t erms  were  excluded ( M1–M4)  because  these  measurements  are  the  most  time  

consuming  to c ollect  or  expensive  to o btain o r  they  may  not  always  be  available  on a nnual  

surveys  (particularly  HSI).  A  model  with a ge  and l ength o nly  (M5)  was  included a s  the  most  

basic  model  for  comparison b ecause  it  excludes  all  condition i ndices  and p ools  data  for  all  legs.   

These  models  were  used  to p redict  if  each in dividual  fish w as  mature  or  immature  and  

the  prediction w as  compared to th  e  maturity  designation f rom  histology  slides.  Summaries  of  
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248 each m odel’s  prediction  success  were  measured  as  the  percent  classification s uccess  for  

immature  and m ature  fish b y  survey  leg.  

 

2.8 A ge  at  maturity   

Age  at  maturity  curves,  using  1)  the  predicted m aturity  from e ach  model  as  well  as  2)  

maturity  designations  from h istology,  were  examined u sing  the  two-parameter  logistic  function  

is  given b y,  

 

(6)     : 1 + =>�$=$ = 1⁄< � $?@%�B,   

                                              

where  :$  is  the  estimate  of  the  proportion m ature  at  age,  δ  is  the  parameter  that  describes  the  

slope  of  the  logistic  curve  (the  speed a t  which  maturity  approaches  100%),  and  a50%  is  the  

parameter  that  describes  the  age  at  which 5 0%  of  the  fish a re  mature.  The  observed p roportion a t  

age  was  calculated a s,  

 

(7)       : = +E$  ,  %E 

              

where  ma  was  the  number  of  mature  fish o bserved  at  age-a  and  na  was  the  total  number  of  fish a t  

age-a.   We  used t he  binomial  likelihood to f  it  the  observed p roportion m ature  at  age  with t he  

logistic  model  given i n e quation 6 .  Because  no s ablefish a re  known t o b e  mature  at  age-0,  we  

penalized th e  likelihood  when m aturity  at  length  or  maturity  at  age-0  was  greater  than 0 %.  The  

penalty f unction w as  a  weighted l east-square  between th e  estimated  maturity  at  age-0  and 0 %,  

given b y:  
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 (8)     F = G�: − 0�  H ,  

 

where  P  is  the  penalty  term  added t o t he  binomial  likelihood,  :H  is  the  estimated p roportion  

mature  at  age-0 a nd  λ  is  the  weighting  term,  which  was  selected to b  e  100 i n o rder  to b alance  fit  

at  age-0  and f it  to o lder  ages  where  maturity  is  greater  than 0 %.   

 

 

3.  Results  

 

3.1 B ody  condition a nd h epatosomatic  index:  summer  and w inter  

The  RC  was  highest  for  mature  fish ( those  fish t hat  would s pawn)  on e ach  leg  (Figure  

2A);  using  t-tests,  there  were  significant  differences  between  mature  and i mmature  fish o n a ll  

legs  and i n t he  winter  (Figure  2A).  Skip s pawning f ish w ere  documented o n  Legs  3  (N  =  6),  4/5  

(N  =  3),  and 7 (  N  =  2).  In  Figure  2B,  much o f  the  same  data  are  presented  as  in  Figure  2A,  

except  that  each  maturity  category  is  presented t ogether  and s kip s pawning  fish a re  included  for  

each s eason ( winter  and s ummer).  An A NOVA  was  used  to t est  for  significant  differences  

between e ach l eg  for  each m aturity  category  and a   Tukey-Kramer  HSD  test  was  used to c  onduct  

pair-wise  comparisons  within e ach m aturity  category.  Significant  differences  based o n th ese  tests  

are  noted in   Figure  2.  There  was  a  progressive  increase  in R C  for  mature  fish f rom L eg  3 t o  Leg  

7 ( Figure  2B);  mature  fish o n  Leg 3 h  ad s ignificantly  lower  RC  than f ish o n  Legs  6  and 7 a  nd t he  

RC  on  Legs  4/5 w as  significantly  lower  than  Leg 7 .   
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293 On  Leg  7,  the  RC  was  at  its  peak a nd w as  similar  to th e  RC  in th e  winter  (Figure  2B).  

Winter  sampling  sites  were  in t he  same  area  as  those  collected  at  the  tail  end o f  Leg  6 a nd o n  Leg  

7.  It  is  possible  that  either,  1)  the  winter  indices  were  closer  to t he  Leg  7 t han o ther  areas  because  

of  a  geographic  effect,  or  2)  samples  in th e  eastern  GOA  would h ave  been  more  similar  to  Leg  7  

and t he  winter  if  sampled  later  in th e  summer,  a  time  effect.  There  were  no  significant  

differences  between i mmature  fish o n a ny  legs  or  between s kip s pawning f ish i n th e  summer  and  

winter  (Figure  2B).  Trawl  gear,  which  was  used in   the  winter,  catches  a  wider  length r ange  than  

longline  gear;  however,  the  condiiton i ndices  are  likley  comparable  if  the  length a t  maturity  does  

not  differ  among  those  caught  in t rawl  and l ongline  gear.  

The  same  analytical  tools  were  used f or  HSI  as  for  RC.  The  trends  in H SI  values  were  

similar  to th ose  for  RC.  The  HSI  for  fish t hat  would s pawn w as  higher  than im mature  fish o n  

each l eg ( Figure  3A).  Like  RC,  in t he  winter  the  HSI  of  skip s pawning f ish w as  similar  to  

immature  fish ( Figure  3A).  Unlike  RC,  the  HSI  for  immature  fish w as  significantly  larger  on  Leg  

7 th an o n a ny  other  time  period ( Figure  3B).  Despite  this  increase,  there  was  still  a  significant  

difference  between i mmature  and  mature  HSI  on l eg  7,  because  the  HSI  of  mature  fish w as  also  

higher  than o n o ther  legs.  There  was  a  gradual,  significant  increase  in H SI  from L egs  4/5 t o 7 f  or  

immature  and m ature  fish ( Figure  3B).  The  mean  RC  and H SI  for  skip s pawning  fish in creased  

from  summer  to w inter,  but  in b oth c ases  the  increase  was  not  significant,  possibly  a  result  of  

small  sample  sizes  (Figures  2B,  3B;  Table  4).  Overall,  RC  and H SI  later  in  the  survey,  

particularly  on  Leg  7,  were  higher  (Figures  2 a nd  3).  

 

3.2 F ecundity  
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315 The  range  in le ngths  of  fish u sed i n a nalyses  of  fecundity  ranged f rom 5 30 t o 1 010 m m  

and f rom 4 t  o 3 8  years  old ( sample  size  =  39).  The  best-fit  model  included  RC,  HSI,  and  L  (or  

W),  with v ery  similar  results  when e ither  lengths  or  weight  were  included  (Table  5).  The  linear  

model  (equation 3 )  used t o e stimate  relative  condition w as  W = 2.598 ∗ 10=O��  .PQ  �.  The  

model  that  included  RC,  HSI,  and  L  was  used to p  redict  fecundity  when  HSI  and  RC  were  

average  (RC  =  0)  and w hen  HSI  and t he  RC  were  one  standard d eviation f rom  average.  For  a  fish  

that  was  782 m m  (average  length),  the  predicted f ecundity  with a n a verage  HSI  and  RC  was  497  

thousand e ggs  (Figure  4).  When  HSI  was  one  standard d eviation f rom a verage,  the  number  of  

eggs  was  either  91 th ousand e ggs  below  (18%)  or  111 th ousand e ggs  above  average  (22%)  

(Figure  4).  When  RC  was  one  standard d eviation f rom a verage,  the  number  of  eggs  was  either  82  

thousand e ggs  below  (17%)  or  99 t housand e ggs  above  average  (20%).  When b oth w ere  one  

standard d eviation f rom a verage,  the  number  of  eggs  was  either  158 t housand e ggs  below  (32%)  

or  232 t housand e ggs  above  average  (47%).    

 

3.3 P redicting m aturity  

The  model  with l eg  as  2  categories  (Legs  3 a nd 4 /5  combined  and  Legs  6  and 7   

combined)  performed b etter  than t he  model  with le g  as  4 c ategories  (one  category  per  leg)  or  

other  pooling  options.  The  AICc  for  the  full  model  with le g  as  2  categories  (MO)  was  259 ( Table  

6)  and t he  AICc  for  the  full  model  when l eg w as  4 c ategories  was  267.  For  this  reason,  the  full  

and n ested  models  in T able  6 ( M0–M4)  have  leg  as  two c ategories.  M0,  the  full  model,  and  M1,  

the  full  model  minus  the  interaction t erms,  had t he  best  model  fits,  as  indicated b y  AIC 2 
c  and R  

(Table  6).  The  next  best  fit  was  achieved b y M 2  (excludes  HSI)  (Table  6).  The  model  with o nly  

age  and le ngth,  M5 ( no l eg,  RC,  or  HSI),  had th e  worst  fit.  
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338 Classification w as  defined a s  a  success  when t he  prediction b y  the  model  was  the  same  

maturity  classification a s  histology.  There  was  lower  classification s uccess  for  immature  fish  

than f unctionally  mature  fish ( those  that  will  spawn;  termed  “mature”  for  simplicity)  (Table  7).  

The  lowest  success  for  immature  fish w as  on  Leg 3 (  59%–68%),  whereas  on o ther  legs  the  

success  rate  was  73%–91%,  when  models  with  Leg  and  condition i ndices  were  used.  The  success  

rate  for  classification o f  mature  fish w as  higher  (83%–98%)  than f or  immature  fish a nd w as  

highest  for  Legs  3 a nd 4 /5 ( 90%–98%).  For  the  combined d ata  (mature  and  immature  fish)  the  

highest  success  rates  were  also o n  Legs  3 a nd 4 /5,  likely  because  more  older,  mature  fish  were  

sampled o n t hese  legs  than o n  Legs  6  and 7 a  nd th ere  was  a  higher  success  rate  for  mature  fish.   

The  predicted m aturities  of  individual  fish u sing  each  model  were  used to f  it  logistic  models  

to t he  proportion o f  fish m ature  at  age  (see  Table  8 f or  parameter  values;  Figures  5  and 6 f  or  

logistic  curves;  Figures  7 a nd 8 f  or  parameters  with c onfidence  intervals).  The  model  currently  

used i n th e  Alaska  stock a ssessment,  which u tilizes  data  collected  from  1978–1983,  is  also  

included i n e ach  figure  for  comparison.  In t he  stock a ssessment  a  single  model  is  used f or  all  

areas  and s o t he  same  curve  is  all  panels  in f igures  (Hanselman  et  al.  2016).  In  addition,  age-at-

maturity  curves  that  utilized  macroscopic  classifications  made  at-sea  in 2 015 a re  included.   

For  Legs  3  and 4 /5,  all  curves  produced  younger  maturity-at-age  estimates  than w hat  is  used  

in t he  stock  assessment  model  currently  (Figures  5,  7,  Table  8).  The  maturity  curves  from  

Models  0–4 p roduced  younger  maturity-at-age  estimates  than t he  curve  fit  to d ata  from h istology  

slides,  particularly  on  Leg  3,  which is   the  earliest  leg  and th e  leg  furthest  to t he  east  (Figures  5,  

7).  On b oth l egs  the  macroscopic  curve  and t he  Model  5 c urve,  which i ncludes  only  length a nd  

age,  were  the  most  similar  to th e  histology  curve  (Figure  5).  In o ther  words,  adding  condition  

indices  did n ot  produce  curves  most  similar  to h istology  on th ese  legs.  For  Legs  3  and 4 /5 th e  
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361 prediction s uccess  for  Model  5 f or  immature  fish  was  high,  but  low  for  mature  fish ( Table  7).  

These  results  indicate  that  prediction s uccess  does  not  always  result  in t he  maturity  curve  most  

similar  to h istology.  This  was  because  the  effect  of  each in correct  prediction a ffected th e  

proportion m ature  at  age  differently  in e ach c ase.  For  example,  in o ne  model  a  5-year  old f ish  

could h ave  been in correctly  predicted t o b e  mature  and i n a nother  model  a  3-year  old f ish  could  

have  been in correctly  predicted to b  e  mature,  which c ould a ffect  the  maturity-at-age  curve  in  

different  ways.   

For  Leg  6 th e  maturity  curves  were  more  variable  than f or  Legs  3  and 4 /5,  because  condition  

indices  were  more  influential  on la ter  legs  than o n  earlier  legs.  The  models  that  were  closest  to  

the  histology c urve  were  Models  0 a nd 1   (Figure  6,  Table  8),  which i ncluded l eg,  length,  age,  

RC,  and H SI  (Table  3).  The  macroscopic  curve  had m uch  younger  estimates  of  ages  at  maturity  

than a ll  other  curves;  the  age-at-50%  maturity  and  the  slope  parameter  confidence  intervals  did  

not  overlap t hose  from a ny  other  model  (Figures  7 a nd 8 ,  Table  8).  Model  5,  which in cluded o nly  

age  and le ngth,  had  younger  estimates  of  age-at-maturity  than o ther  models  and t he  histology  

curve.  The  models  with a ge,  length,  and s ome  measure  of  condition w ere  the  most  similar  to  

histology  (Figure  6).  The  curve  currently  used i n t he  stock a ssessment  was  closer  to h istology  on  

Leg  6 t han o n  Legs  3 a nd  4/5 ( Figures  5  and 6 ).  

For  Leg  7,  Models  0,  1,  and 2 ,  which e xcluded H SI,  were  close  to t he  histology  curve  (Figure  

6).  Like  Leg  6,  1)  the  macroscopic  curve  for  Leg 7 h  ad th e  youngest  estimates  of  ages-at-

maturity  and th e  steepest  slope  parameter,  and 2 )  Model  5,  the  model  with  age  and l ength o nly,  

had e stimates  of  maturity  that  were  younger  than o ther  predictive  models  and w as  the  most  

dissimilar  to h istology  (Figures  6,  7).  Unlike  leg  6,  the  stock a ssessment  model  had o lder  ages  at  
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383 maturity  than o ther  all  models.  For  all  legs  the  prediction s uccess  did n ot  always  translate  into a   

maturity-at-age  curve  that  was  the  most  similar  to  histology.   

When t he  maturity  of  skip s pawning  fish w as  predicted,  where  the  only  classification o ptions  

were  mature  (will  spawn)  and i mmature,  2/11 f ish  (82%)  were  predicted t o  be  mature  and th e  

rest  as  immature.  Those  categorized a s  immature  were  1)  550 m m  long,  age  6,  HSI  =  1.35,  RC  =  

-54 o n  Leg  5 a nd 2 )  620  mm  long,  7  years  old,  HSI  =  1.52,  RC  =  -132,  on  Leg  7.  When t he  

model  included  age  and le ngth o nly  a  third  fish w as  identified a s  immature  (length =   640,  age  =  

5,  HSI  =  1.83,  RC  =  -94).  

In s ummary,  the  models  that  were  most  similar  to  histology  included m easures  of  condition  

on  Legs  6  and 7 .  On  Legs  3 a nd 4 /5 t he  model  without  measures  of  condition h ad t he  curve  

closest  to h istology.  The  macroscopic  curves  differed f rom o ther  curves  on  Legs  6  and 7 ,  but  

were  similar  to o ther  curves  on  Legs  3 a nd 4 /5.  The  curve  currently  used i n th e  stock a ssessment  

was  more  similar  to t he  models  and h istology  on L egs  6  and 7 t  han o n  Legs  3 a nd 4 /5.   

 

4.  Discussion  

 

We  found t hat  maturity  predicted u sing  some  combination o f  the  survey  leg,  age,  length,  

RC,  and H SI  produced  maturity  curves  that  were  similar  to t he  histology  curve,  but  the  closest  

model  varied b y  leg.  On  earlier  legs  of  the  survey  in t he  eastern p ortion o f  the  GOA,  Legs  3  and  

4/5,  the  maturity-at-age  model  that  was  closest  to h istology  included o nly  age  and l ength ( Model  

5).  Later  in t he  survey,  on  Legs  6  and 7 ,  the  models  that  produced c urves  most  similar  to  

histology  included le ngth,  age,  and  measures  of  condition.  The  sampling  timing  relative  to th e  

reproductive  cycle  are  likely  the  reason  for  this  discrepancy.  A  higher  portion o f  fish o n e arlier  

legs  had  oocytes  in e arly  stages  of  vitellogenesis  whereas  more  fish w ere  in la ter  stages  of  
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407 vitellogenesis  on  Leg  7.  (The  progression o f  development  on t he  summer  survey,  utilizing  the  

samples  in th is  study,  was  reported i n R odgveller  2018.)  A  trend o f  increasing  condition w ith  

development  has  been o bserved i n o ther  studies.  For  example,  developing  Atlantic  cod h ave  a  

higher  HSI  as  spawning a pproaches  (Skjaeraasen  et  al.  2009).  This  increase  in e nergy  storage  

occurs  in th e  liver  because  this  is  where  the  precursor  to v itellogenin i s  synthesized ( Korsgaard  

and P etersen 1 979;  Emmersen a nd E mmersen 1 976).  Because  on  Legs  3 a nd 4 /5 th ere  were  

smaller  differences  in c ondition b etween im mature  and d eveloping  fish ( functionally  mature),  

condition i ndices  were  not  useful  for  predicting  maturity.  The  condition o f  immature  fish w ere  

more  stable  than d eveloping  fish th roughout  the  survey,  likely  because  these  fish a re  still  

devoting  energy  to  growth o ver  reproduction ( Roff  1983).   

To d etermine  if  differences  in c ondition m ay  have  been a ffected b y g eography  and i f  the  

reproductive  cycle  follows  the  same  schedule  throughout  the  GOA,  all  areas  would n eed to b  e  

sampled a t  the  same  time  in a t  least  two t ime  periods  (such a s  July  and A ugust)  to c ompare  

oocyte  development  and  RC  and H SI  geographically.  For  a  direct  comparison o f  condition b y  

area,  fish s hould b e  sampled w hen t hey  are  at  a  similar  point  in th e  reproductive  cycle.  In th is  

study  the  potential  effects  of  geography  and s ampling  timing w ere  confounded b ecause  each a rea  

was  sampled a t  a  different  time.   

The  earlier  development  stages  on  Legs  3 a nd 4 /5  also i ndicated a   potential  issue  with  

maturity  classification a ccuracy.  A  large  portion o f  developing  fish o n  Legs  3 a nd 4 /5 h ad  

oocytes  in t he  early  stages  of  vitellogenesis  (Rodgveller  2018).  This  creates  a  challenge  for  

classifying m aturity  correctly,  even w ith h istology,  because  this  early  in th e  cycle  some  fish t hat  

appear  to b e  immature  or  skip s pawning m ay  move  into a   developing  stage  later  in t he  summer  

and s pawn in t  he  winter.  If  some  of  the  fish c lassified a s  not  functionally  mature  were  in f act  
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430 going  to d evelop  and s pawn,  the  histology  maturity  curve  would h ave  been  further  to th e  left,  

possibly  closer  to th e  model-predicted m aturity  curves  (Figure  5).  This  could b e  tested i f  samples  

were  collected l ater  in d evelopment  in th ese  areas.  Because  of  this  uncertainty,  on t he  AFSC  

longline  survey  models  should b e  used t o p redict  maturity  for  Legs  6 a nd 7   only.  Leg  7 i s  the  

most  reliable  because  1)  more  developing  fish a re  in t he  later  stages  of  vitellogenesis  and i t  is  

unlikely  that  immature  fish w ill  initiate  development  after  the  survey  (Rodgveller  2018)  and 2 )  

the  largest  differences  in  the  condition o f  developing  and i mmature  fish w as  on  Leg  7,  increasing  

their  utility  in p redictive  models.   

Models  0 a nd 1   contained a ll  factors  and p roduced t he  maturity  curves  closest  to  

histology  for  Legs  6  and  7,  and s o th ese  models  are  preferred.  However,  HSI  is  not  collected  

regularly  on t he  annual  longline  surveys.  Models  2  and 4 a  re  more  practical  because  liver  weight  

is  not  required.  On b oth le gs  these  curves  were  relatively  close  to t he  histology  curves  and t he  

models  had s imilar  AICc  values.  Model  2  curve  was  closer  to t he  histology  maturity  curve  and  

therefore  Model  2,  which  includes  the  interaction o f  Leg  and R C,  is  preferred o ver  Model  4,  

which e xcludes  this  interaction.  A  caveat  to u sing  these  models  to p redict  maturity  is  that  the  

effect  of  the  predictor  variable  on m aturity  is  assumed t o b e  static.  If  there  is  an i nteraction  

between th e  year  and t he  effect  of  these  predictors,  the  maturity  designations  may  be  less  

accurate  in o ther  years.  More  years  of  histology  and c ondition d ata  are  needed t o e nsure  the  

relationships  hold.   

In s ome  cases  the  confidence  intervals  for  the  age-at-maturity  curve  parameters  were  not  

significantly  different.  However,  a  vector  of  maturity-at-age  values  from  the  maturity  curve  are  

used i n th e  sablefish s tock  assessment  to e stimate  spawning  stock  biomass  and v ariability  is  not  

incorporated.  It  will  be  important  to e valuate  the  effect  of  different  age-at-maturity  curves  
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453 resulting  from c andidate  models  to s ee  if  there  are  meaningful  differences  in e stimates  of  

spawning  stock  biomass  and r esulting  fishing  reference  points.   

Skip s pawning  was  documented in t  his  study  and  has  been d ocumented in   sablefish  

previously  (Rodgveller  et  al.  2016,  Rodgveller  et  al.  2018).  Because  there  were  so f ew  skip  

spawners  observed in t  his  study,  skip s pawning  could n ot  be  included in p  redictive  models  as  a  

category.  This  could b e  added i n th e  future  if  more  skip s pawning  fish a re  collected i n th e  

summer  and i dentified w ith h istology.  The  majority  of  skip s pawning  fish w ere  identified a s  

mature  (82%).  This  will  produce  a  maturity  curve  that  reflects  the  number  of  fish th at  are  mature  

and n ot  just  those  that  are  functionally  mature  (will  spawn t his  season).  More  data  on s kip  

spawners  is  needed b efore  it  can b e  added a s  a  third m aturity  category  in p redicative  models.   

Skip s pawning  was  documented in t  his  study  as  well  as  during  the  winters  of  2011 a nd  

2015 in t  he  Gulf  of  Alaska  (Rodgveller  et  al.  2016,  Rodgveller  et  al.  2018).  For  all  data  

combined  (N  =  48)  the  average  age  was  11.6  years  old ( median =   11,  mode  =  7).  Because  skip  

spawning  sablefish a re  generally y oung  (maximum  age  is  94  years,  Kimura  et  al.  1998)  and th e  

rate  of  skip s pawning d ecreases  with a ge  (Rodgveller  et  al.  2018),  the  standard l ogistic  curve,  

where  maturity  asymptotes  at  1,  should b e  adequate  for  describing  the  maturity-at-age.  If  skip  

spawning  was  more  prevalent  at  older  ages  or  if  there  was  senescence,  a  curve  that  reaches  a  

maximum o f  less  than 1   or  a  curve  with a n a lternate  shape,  such  as  dome-shaped,  may  be  more  

appropriate  (Secor  2008;  Brooks  2013).   

Samples  were  collected i n 2 015 w hen th e  North  Pacific  Ocean  was  in a   warm,  positive  

Pacific  Decadal  Oscillation p hase,  resulting  in t he  formation o f  the  warm w ater  “blob”  in t he  

Gulf  of  Alaska,  which c ontinued t hrough 2 016 ( Zador  2015,  North  Pacific  Marine  Science  

Organization 2 016).  However,  the  deep-water  on  the  continental  slope  where  the  sablefish  
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476 fishery  and s urveys  occur  is  thermally  stable  and  cold;  the  annual  deviation f rom a verage  on th e  

AFSC  longline  surveys  from 2 009–2018 w as  0–5%  in e ach  area  and t he  direction d id n ot  

coincide  with w arm  phases  (unpublished,  Rodgveller,  AFSC).  The  changes  in s urface  water  

productivity  may  have  affected t he  food c hain i n d eeper-water,  but  this  has  not  been s tudied.  It  is  

not  likely  that  development  timing  was  affected d ramatically  by  the  surface  water  warming  event  

in 2 015 b ecause  no  fish w ere  found i n s pent  condition o r  in n ear  spawning c ondition i n J uly  or  

August  and t he  appearance  of  fresh o varies  was  consistent  with p ast  years.    

Fecundity  was  significantly  related to li  ver  and b ody  condition.  Fecundity  has  been  

shown t o b e  negatively  affected b y  poor  condition  in o ther  species  as  well.  For  example,  in  

haddock  (Melanogrammus  aeglefinus)  condition i ndices  were  significant  predictors  of  fecundity  

and n either  factor  was  correlated  with le ngth ( Skjaeraasen e t  al.  2013).  The  same  trend w as  

observed i n c aptive  Atlantic  cod,  where  the  realized f ecundity  was  only  20%  to 8 0%  of  the  

potential  fecundity,  depending  on t he  nutritional  status  (Kjesbu e t  al.  1991).  The  effects  of  

fluctuating  sablefish H SI  and R C  by  +/- 1 S D  were  substantial,  31–47%  for  a  fish o f  average  

length.  Similar  to o ur  study,  a  model  used to p  redict  fecundity  of  haddock w as  improved b y  

including  measures  of  condition ( Blanchard e t  al.  2003);  a  25%  increase  in r elative  condition  

resulted in a    1.9-fold i ncrease  in f ecundity-at-length a nd w hen r elative  liver  size  doubled th ere  

was  a  2.0-fold in crease  in f ecundity  (Blanchard e t  al  2003).  These  studies  demonstrate  that  

fluctuations  in c ondition h ave  the  potential  to m ake  large,  population-wide  differences  in t otal  

egg  production.  There  are  other  maternal  effects  that  may  also a ffect  the  fecundity  of  sablefish.  

The  relative  fecundity  of  sablefish in A  laska  (fecundity/body  weight)  decreased w ith a ge,  

indicating  that  the  productivity  of  fish  may  decrease  as  they  get  older  (Rodgveller  et  al.  2018).  

Our  results  and th ese  studies  demonstrate  that  there  are  factors  that  affect  fecundity a nd  
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499 reproductive  output  that  are  poorly  understood a nd n ot  accounted f or  in p opulation m odels,  

including  sablefish.  

Besides  using  condition t o p redict  maturity,  these  indices  have  been u sed d irectly  as  an  

index  of  egg  production i n p lace  of  spawning  biomass.  Spawning  stock  biomass  is  a  proxy  for  

total  egg  production.  It  incorporates  population s tructure,  maturation r ates,  and w eight,  but  does  

not  include  the  effects  of  fish c ondition o r  other  maternal  effects.  For  Atlantic  cod a   condition  

index  has  proven t o b e  related t o e gg  production a nd r ecruitment  (Marshall  and  Frank  1999,  

Marshall  et  al.  1999),  even i n a   50-year  time  series  (Atlantic  cod,  Marshall  et  al.  2000).  At  the  

same  time  spawning  stock  biomass  was  shown t o b e  a  poor  index  for  total  egg  production  

(Marshall  et  al.  1998;  Marshall  et  al.  1999).  Because  condition c an b e  related to f  ecundity,  

spawning,  and r ecruitment,  it  is  important  to e valuate  how  these  indices  be  used t o p redict  annual  

reproductive  potential.  

The  maturity-at-age  curve  currently  used in t  he  stock a ssessment  has  fish  maturating  at  

older  ages  than  all  models  for  Leg  7 b ut  at  younger  ages  than  many  models  on  Leg  6,  including  

histology  (difference  in  a50%  between th e  stock a ssessment  and h istology  was  0.3  years  on  Leg  6  

and 0 .5 y ears  on  Leg  7),  but  the  differences  were  much s maller  on th ese  legs  than o n  Legs  3 a nd  

4/5.  Although t hese  differences  on  Legs  6 a nd 7   may  not  produce  meaningful  changes  to  

management  in 2 015,  annual  differences  in o ther  years  may  be  more  significant  if  fish c ondition  

fluctuates.  Predictive  models  from  this  study  could b e  used t o p roduce  a  time  varying  maturity  

curve  for  the  assessment,  which c ould l ead t o  more  accurate  estimates  of  biological  reference  

points  and s tock  status.   

In s ummary,  we  found t hat  female  sablefish m aturity  can  most  accurately  be  predicted o n  

the  latest  legs  of  the  survey,  which w ere  in t he  central  GOA.  Despite  being 6 –7 m onths  away  
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522 from  the  spawning  season,  the  predictive  models  used in th  e  last  month o f  the  survey  were  able  

to u tilize  measures  of  condition to im  prove  the  prediction o f  maturity.  For  sablefish,  the  model  

that  was  best  in te rms  of  accuracy  and p racticality  of  obtaining  data  at-sea  was  the  model  that  

included l ength,  age,  and  relative  body  condition.  If  liver  weight  is  collected,  this  should a lso b e  

included i n m odels,  but  it  is  not  currently  part  of  the  regular  survey  operations.   

In o ther  species  these  same  methods  may  be  used  for  predicting m aturity  if  the  sampling  

timing  is  appropriate.  The  proportion o f  females  with o ocytes  in la ter  stages  of  vitellogenesis  

should b e  high,  which i ndicates  that  the  spawning p opulation h as  initiated o ocyte  maturation a nd  

histological  classifications  of  maturity  are  reflective  of  future  spawning.  To  utilize  condition  

indices,  there  should b e  a  measurable  difference  in c ondition b etween  mature  and i mmature  fish.  

The  models  used t o p redict  maturity  should b e  tested o ver  time,  utilizing  histology,  to e nsure  that  

there  are  not  meaningful  differences  in th e  predictive  model  coefficients  from  year  to  year.  

Fecundity  was  also s ensitive  to c hanges  in c ondition a nd s o f luctuations  in c ondition m ay  affect  

productivity  both b y  affecting  total  egg p roduction a nd m aturation.  When  condition a ffects  

reproduction ( the  fecundity-length o r  fecundity-weight  relationship a nd t he  age  at  maturity  

curve),  its  effects  on e stimates  of  population p roductivity  should b e  evaluated.  Management  may  

be  adjusted f or  changes  in p roductivity  by  either  lowering  fishing  rates  to a void o verfishing  

when c ondition is   low,  or  allowing  for  higher  fishing  rates  when p roductivity  is  high.  
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 Leg  Start date   End date  

 3  July 5    July 19 

 4   July 21   July 22 

 5   July 24   August 2 

 6   August 5  August 15  

 7  August 17   August 26  

   

708 Table  1  

Start  and  end d ates  of  each A laska  Fisheries  Science  Center  longline  survey  leg.  Dates  remain  

the  same  each  year.  
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   Structures defining maturity  Maturity 

     Oocytes with multiple nucleoli and/or 
    perinucleolar; thin ovarian wall. 

Immature  

    Oocytes with multiple nucleoli and/or  
       perinucleolar oocytes; may also contain oocytes in 

      early cortical alveoli stage; thick ovarian wall;  
  Skip spawning 

    thick stroma; blood vessels present.  

   Early cortical alveoli stage.  Immature  

    Late cortical alveoli stage.    Maturing, will spawn 

     Yolk accumulated within eosinophylic spheres 
(vitellogenesis).  

   Maturing, will spawn 

  

   

712 Table  2  

Sablefish  (Anoplopoma f imbria)  ovarian  maturity  classification a nd a ccompanying  oocyte  

development  stages  identified h istologically  during  July  and A ugust  (on s urvey  Legs  3 th rough  

7)  in t he  Gulf  of  Alaska.   
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   721 

718 Table 3 

719 Parameters included in each logistic regression model of maturity where the response was either 

720 mature (will spawn) or immature. 

Parameters 

Model Leg Length Age HSI RC Leg*RC Leg*HSI Descritption 

M0 X X X X X X X Full model 

M1 X X X X X - - No interactions 

M2 X X X - X X - No HSI 

M3 X X - X X X X No age 

M4 X X X - X - - No HSI; no interactions 

M5 - X X - - - - Length/age only 



 

 

 

 Leg Immature   Mature 
 Skip 

spawn  
 Total 

 3  37  170  6  213 
 4/5  41  134  3  178 

 6  48  65  0  113 
 7  38  55  2  95 

Winter   177  270  13  460 
   725 

722 Table  4  

Number  of  mature,  immature,  and s kip s pawning  fish u sed f or  comparisons  of  relative  condition  

and r elative  liver  size  of  female  sablefish ( Anoplopoma f imbria).   
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 Dependent   Explanatory   Estimate  SE  t-ratio  p R2 Adj   

 Ln(F)  intercept  11.75  0.19  61.24  <0.00  0.73 

  RC  0.77  0.25  3.07  0.00  

  HSI  0.15  6.95∗ 10=   2.10  0.04  

  Weight 1.69 ∗ 10=S  1.95∗ 10=O   8.69  <0.00  

       

 Ln(F)  intercept  9.62  0.33  29.13  <0.00  0.74 

  RC  1.69  0.28  5.96  0.00  

  HSI  0.16  0.07  2.29  0.03  

  Length 3.88 ∗ 10=U  4.40∗ 10=S   8.81  <0.00  

  

   

726 Table  5  

Best-fit  models  for  maternal  parameters  that  helped e xplain t he  variability  in f ecundity,  where  

RC  is  the  relative  condition,  HSI  is  the  hepatosomatic  index,  R2  Adj  is  the  adjusted R 2  for  the  

model,  and  SE  is  the  standard e rror.  When e ither  length o r  weight  were  included,  the  R2  values  

were  very  similar.  The  sample  size  was  39 f ish.  
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    Parameter estimates      

Model  Inter.  Leg*HSI   AICc R2   df  N Leg   Len.  Age HSI   RC  Leg*RC 

 M0  -20.946  0.760  0.026  0.330  1.265 1.40*10-3  Leg*([RC+9.10 (Leg*-  259  0.63 7   543 

 2]*[-1.352*10-3)  0.382)*(HSI-2.03) 

 M1  -19.745  0.773  0.024  0.299  1.231 1.59*10-3   -  -  262  0.62 5   543 

 M2  -20.121  0.628  0.029  0.290  - 2.23*10-3  Leg*([RC+9.10  -  273  0.60 5   543 

 2]*[-1.337*10-3) 

 M3  -22.610  0.911  0.032  -  1.240 1.43*10-3  Leg*([RC+8.55 (Leg*-  289  0.60 6   580 

 2]*[-7.72*10-4])  0.300)*(HSI-2.03) 

 M4  -19.430  0.639  0.028  0.277  -  2.34*10-3  -  -  276  0.60 4   543 

 M5  -19.521  -  0.028  0.299  -  -  -  -  301  0.55 2   543 

             

  

   

733 Table  6.   Logistic  regression p arameter  estimates  for  each lo gistic  regression m odel  used to   

predict  whether  a  fish w ould s pawn o r  was  immature.  “Inter.”  is  the  intercept,  “Len.”  is  the  fish  

length,  “HSI”  is  the  hepatosomatic  index,  “RC”  is  the  relative  condition,  and “ Leg”  is  the  survey  

leg.  “Leg*RC”  and  “Leg*HSI”  were  interaction t erms.  Leg  is  equal  to - 1  when  Legs  3 a nd 5   are  

pooled in to o ne  category  and e qual  to 1 w  hen  Legs  6  and 7 a  re  pooled.  Model  3 a lso i ncludes  

samples  where  there  were  lengths  and n o a ges  because  it  does  not  include  an a ge  term ( see  N  for  

sample  size).  The  corrected A kaike  Information C riterion ( AICc),  the  correlation c oefficient  (R2),  

and m odel  degrees  of  freedom  (df)  are  also l isted f or  each  model.   
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 Histology Leg  M0  M1  M2  M3  M4  M5  Count  

 Immature 

 Immature 

 Immature 

 Immature 

 

 Mature 

 Mature 

 Mature 

 Mature 

 

 Combined 

 Combined 

 Combined 

 Combined 

3  

 4/5 

6  

7  

 

3  

 4/5 

6  

7  

 

3  

 4/5 

6  

7  

 68% 

 85% 

 91% 

 78% 

 

 98% 

 98% 

 89% 

 93% 

 

 92% 

 94% 

 90% 

 88% 

 65% 

 85% 

 85% 

 78% 

 

 98% 

 98% 

 89% 

 91% 

 

 92% 

 94% 

 88% 

 86% 

 68% 

 83% 

 83% 

 86% 

 

 98% 

 98% 

 90% 

 87% 

 

 92% 

 94% 

 87% 

 87% 

 59% 

 83% 

 88% 

 73% 

 

 98% 

 98% 

 85% 

 93% 

 

 91% 

 95% 

 86% 

 85% 

 65% 

 83% 

 83% 

 86% 

 

 98% 

 98% 

 92% 

 83% 

 

 92% 

 94% 

 88% 

 85% 

 68% 

 90% 

 65% 

 68% 

 

 93% 

 90% 

 95% 

 93% 

 

 89% 

 96% 

 82% 

 82% 

 37 

  40 (41) 

  46 (48) 

 37 

 

 168 

  100 (133) 

  61 (62) 

 54 

 

 205 

  140 (174) 

  107 (110) 

 91 

  

   

743 Table  7    

Percent  of  female  sablefish ( Anoplopoma fi mbria)  with m aturity  classifications  that  matched  

designations  from  histology  slides  for  each m odel  (M0 th rough  M5).  The  cells  highlighted h ave  

the  highest  prediction s uccess  for  that  leg  (row).  “Count”  is  the  number  of  fish w ith l engths  and  

ages.  In p arentheses  is  the  number  of  fish w ith le ngths  only.  Leg  4 d id n ot  include  any  fish w ith  

ages.  Three  fish f rom  Leg  6 w ere  not  aged.  
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  Leg  M0  M1  M2  M3  M4  M5  Histo  Macro  SA 

 a50%  3  5.25a  5.24a  5.3a  5.08a  5.19a  5.64a  5.68a  5.07a  6.60b 

  4/5  5.45a  5.45a  5.36a  5.26a  5.36a  5.66a  5.72a  5.58a  6.60b 

  6  7.10a  6.93a  6.66ab  7.46a  6.56ab  5.84b  6.90ac  4.78d  6.60ac 

  7  5.76ac  5.85ac  6.21ac  5.65a  6.41ac  5.38a  6.07a  3.76b  6.60c 

           

 Slope  3  1.37a  1.32a  1.30a  1.30a  1.34a  1.35a  1.08a  1.31a  6.60b 

  4/5  1.53a  1.53a  1.52a  1.51a  1.52a  1.50a  1.32a  1.42a  0.84b 

  6  0.96abc  1.00abc  1.08abc  0.77ad  1.14bc  1.18bc  0.93abd  1.35c  0.84d 

  7  1.05a  1.05a  1.05a  1.03a  1.00a  1.23a  1.04a  1.99b  0.84c 

  

  

   

751 Table  8  

Age  at  50%  maturity  (a50%)  and s lope  parameters  of  logistic  regressions  fit  to m aturity-at-age  

data  from m aturity  designations  produced f rom e ach p redictive  model  (M0-M5)  and f or  maturity  

designations  from  histology  slides  (histo).  Parameters  for  the  maturity-at-age  curve  using  

maturity  classifications  from  macroscopic  classifications  at-sea  (Macro)  are  included a s  well  as  

the  parameters  currently  used i n th e  Alaska  stock a ssessment  population m odel  (SA).  The  SA  

model  is  used f or  all  geographic  areas  in A laska.  All  data  were  collected o n th e  2015 A laska  

Fisheries  Science  Center  annual  summer  longline  survey,  except  for  data  used i n t he  SA  model.  

For  each l eg ( row),  values  that  share  the  same  letter  are  not  significantly  different  from o ne  

another.  Those  that  have  different  letters  are  significantly  different  from o ne  another.  
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764 Fig.  1.  Stations  sampled  on  Legs  3 t hrough 7 ,  in J uly  and A ugust  2015,  of  the  Alaska  Fisheries  

Science  Center  annual  longline  survey  in th e  Central  Gulf  of  Alaska  (CGOA),  Western Y akutat  

(WYAK),  and E ast  Yakutat  (EYAK)  management  areas.  Circles  with n o f ill  are  stations  sampled  

in D ecember  2015.  

 

Fig.  2.  Relative  condition ( RC)  for  sablefish  collected o n L egs  3 t hrough 7   of  the  summer  

longline  survey  (S)  or  in  the  winter  (W).  Immature  (I),  mature  (M),  and s kip s pawning  (SS)  fish  

are  labeled f or  the  winter  so th at  skip s pawning  fish c an b e  differentiated f rom  the  other  two  

groups.  In P anel  A,  an *   represents  a  significant  difference  between  maturity  categories  during  

that  sampling  period.  Panel  B  includes  much o f  the  same  data  in p anel  A,  except  that  each  

maturity  category  is  presented to gether  and s ignificant  differences  within e ach  maturity  category  

between s ampling  periods  are  denoted b y  a  different  letter.  In P anel  B,  SS  samples  are  pooled f or  

all  of  summer  (N  =  11)  and c ompared to t  hose  collected i n t he  winter  (N  =  16).  The  95%  

confidence  intervals  (CI)  are  marked w ith w hiskers  and th e  lower  portion o f  the  CI  for  summer  

skip s pawning  fish i s  truncated t o  maintain t he  same  scale  as  Panel  A.   

 

Fig.  3.  Hepatosomatic  index  (HSI)  for  sablefish c ollected o n  Legs  3 th rough 7 o  f  the  summer  

longline  survey  (S)  or  in  winter  (W).  Immature  (I),  mature  (M),  and s kip s pawning  (SS)  fish a re  

labeled f or  the  winter  because  skip s pawning m ust  be  differentiated f rom  the  other  two  groups.   

In  Panel  A,  on e very  survey  leg  the  mean  for  immature  fish is   lower  than t he  mean f or  fish t hat  

will  spawn.  An * r  epresents  a  significant  difference  between m aturity  categories  during  that  

sampling  period.  Panel  B  includes  much o f  the  same  data  in p anel  A,  except  that  each  maturity  

category  is  presented to gether  and s ignificant  differences  within e ach m aturity  category  between  
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787 sampling  periods  are  denoted b y  a  different  letter.  In  Panel  B,  SS  samples  are  pooled f or  all  of  

summer  (N  =  11)  and c ompared to t  hose  collected in t  he  winter  (N  =  16).  

 

Fig.  4.  Relationship b etween le ngth a nd f ecundity  when t he  residual  condition ( RC)  is  average  

and t he  hepatosomatic  index  (HSI)  is  average  (solid,  black  line),  when H SI  is  average  and R C  is  

either  plus  or  minus  one  standard d eviation ( blue  lines),  when R C  is  average  and t he  HSI  is  

either  plus  or  minus  one  standard d eviation ( red l ines),  or  when b oth R C  and H SI  are  plus  or  

minus  one  standard d eviation ( dashed,  black  lines).  

 

Fig.  5.  Logistic  curves  of  maturity  at  age  when  maturity  was  determined u sing  histology  slides  

(Histo),  predicted u sing m odels  M0 t hrough  M5,  or  classified  macroscopically  at-sea  (macro)  for  

Legs  3  and 4 /5 o f  the  summer  Alaska  Fisheries  Science  Center’s  longline  survey.  The  maturity-

at-age  curve  currently  used i n th e  Alaska  sablefish s tock  assessment  (SA)  population m odel  is  

also i ncluded;  the  same  curve  is  used f or  all  legs.  Note  that  on  Leg  3  M0,  M1,  and  M4 a re  nearly  

identical  and c annot  be  visually  differentiated.  In  the  Leg  5 p anel  M0 t hrough  M4 a re  very  

similar  and i n s ome  cases  cannot  be  visually  differentiated.  M5 i s  very  similar  to M acro.  

 

Fig.  6.  Logistic  curves  of  maturity  at  age  when  maturity  was  determined u sing  histology  slides  

(Histo),  predicted u sing m odels  0–5 ( M0 th rough  M5),  or  classified  macroscopically  at-sea  

(macro)  for  Legs  6 a nd 7   of  the  Alaska  Fisheries  Science  Center  longline  survey.  The  maturity-

at-age  curve  currently  used i n th e  Alaska  sablefish s tock  assessment  (SA)  population m odel  is  

also i ncluded;  the  same  curve  is  used f or  all  legs.  Note  that  in t he  Leg  6 p anel  M1 c annot  be  seen  

because  it  is  matches  very  closely  to H isto.   
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811 Fig.  7.  Age-at-50%  maturity  parameters  of  logistic  regressions  fit  to m aturity-at-age  data  for  

each s urvey  leg  from e ither  1)  maturity  designations  produced f rom e ach p redictive  model  (M0-

M5);  2)  maturity  designations  from h istology  slides  (histo);  3)  for  maturity  designations  made  at-

sea  from  fresh o varies  (macro);  or  4)  the  parameter  used i n t he  stock a ssessment  (SA).  The  SA  

model  is  used f or  all  geographic  areas  in A laska.  All  data  were  collected o n th e  Alaska  Fisheries  

Science  Center  annual  longline  survey,  except  for  data  used i n th e  SA  model.  The  95%  

confidence  intervals  were  obtained f rom  running 1 ,000 b ootstraps.  There  is  no r aw  data  available  
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